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Abstract—Robot manipulation usually involves multiple con-
tact modes and primitives, leading to a hybrid structure. This
requires joint logic-geometric programming for robot planning
and control, posing significant challenges to existing gradient-
based and sampling-based techniques. To address this issue, we
propose Graph of Tensor Networks (GTN), where the problem
is formulated as a shortest-path problem in this graph. The path
includes a sequence of vertices corresponding to the contact
modes and the continuous state in the vertex set. Our main
contribution is to introduce the first-order logic into graph
to alleviate the combinatorial complexity and to use Tensor
Networks to approximate the value function within each vertex
set, representing the distance between any two vertex states.
The low-rank structure further facilitates finding near-globally
optimal solutions. We validate the effectiveness of the proposed
idea in a pusher-slider system and sequential manipulation tasks.

I. INTRODUCTION

Physically interacting with the surroundings is crucial for
robots to operate effectively in our daily lives. One of the key
challenges to achieving this is the hybrid structure inherent
in manipulation tasks: The under-actuated dynamics leads
to frequent contact breaking and establishment; Coulomb
friction results in different contact modes, such as sticking and
sliding. Moreover, multiple different manipulation primitives,
such as pushing and pivoting, are involved for long-horizon
manipulation, each with distinct motion equations. This hybrid
structure requires joint logic-geometric reasoning, posing sig-
nificant challenges to current planning and control techniques.
Gradient-based techniques excel at geometric motion planning
due to the locally linear model constructed with gradients.
However, the non-smooth nature of these tasks quickly dis-
rupts this because the Taylor approximation no longer holds
at the intersection of different contact modes [10]. Sampling-
based techniques are available to address gradient vanishing
issues; however, the combination of logic and geometric
decision variables results in combinatorial complexity. The
resulting high-dimensional solution space makes it tough for
sampling methods to find the correct solutions. In general,
manipulation tasks require joint reasoning over both logic and
geometric decision variables, encountering the limitations of
both gradient-based and sampling-based methods. This makes
manipulation tasks particularly challenging and necessitates
advanced techniques to effectively address this complexity.

To address this issue, mathematical program using comple-
mentary constraints (MPCC) is proposed in [11, 6]. By uncov-
ering the internal structures of different contact modes, this
method eliminates the need for integer variables in problem

Fig. 1: An example of GTN for sequential manipulation. Left: The
vertex states of a rectangular object that can only be grasped from
the side. Right: The graph structure with the found optimal logic-
geometric paths that connect x1 and xt. Both kinematic and dynamic
constraints are considered to be satisfied.

formulation, allowing the use of gradient-based techniques.
However, adding complementary constraints introduces more
discontinuities and non-differentiabilities in the feasible region
of the problem, increasing the likelihood of getting trapped
in local optima. Recently, a new technique called Graph of
Convex Sets (GCS) [5] has emerged. It decomposes a complex
non-convex problem into multiple simpler convex problems.
By combining the global perspective of graph search with
the local efficiency of convex optimization, this method can
effectively provide the global optimal solution. It performs
well once the non-convex problems can be convexified [4].
However, convexifying manipulation tasks involving physical
contact is typically challenging due to the complicated contact
dynamics.

Inspired by GCS, we propose Graph of Tensor Networks
(GTN) in this study. GTN utilizes graph structures to express
the combinatorial complexity arising from discrete variables.
However, instead of employing convex optimization for ge-
ometric aspects, we propose leveraging tensor networks to
approximate the value function of each vertex set. This method
eliminates the need for convexifying the dynamics model and
cost/reward function while still potentially providing a near-
global solution. We applied this method to the pusher-slider
system and several sequential manipulation tasks, showcasing
reactive control under real-world uncertainty and fast planning
for long-horizon manipulation tasks.

II. BACKGROUND

A. Tensors as Discrete Analogue of a Function

A multivariate function P (x1, . . . , xd) defined over a rect-
angular domain made up of the Cartesian product of intervals



(or discrete sets) I1×· · ·×Id can be discretized by evaluating
it at points in the set X = {(xi1

1 , . . . , xid
d ) : xik

k ∈ Ik, ik ∈
{1, . . . , nk}}. This gives us a tensor P , a discrete version of
P , where P(i1,...,id) = P (xi1

1 , . . . , xid
d ),∀(i1, . . . , id) ∈ IX ,

and IX = {(i1, . . . , id) : ik ∈ {1, . . . , nk}, k ∈ {1, . . . , d}}.
The value of P at any point in the domain can then be
approximated by interpolating between the elements of the
tensor P .

B. Tensor Networks and Tensor Train Decomposition
However, naively approximating a high-dimensional func-

tion using a tensor is intractable due to the combinatorial and
storage complexities of the tensor (O(nd)). Tensor networks
mitigate the storage issue by decomposing the tensor into
factors with fewer elements, akin to using Singular Value De-
composition (SVD) to represent a large matrix. In this paper,
we explore the use of Tensor Train, a type of Tensor Network
that represents a high-dimensional tensor using several third-
order tensors called cores.

We can access the element (i1, . . . , id) of the tensor in this
format simply given by multiplying matrix slices from the
cores:

P(i1,...,id) = P1
:,i1,:P

2
:,i2,: · · ·P

d
:,id,:

, (1)

where Pk
:,ik,:

∈ Rrk−1×rk represents the ik-th frontal slice (a
matrix) of the third-order tensor Pk. For any given tensor,
there always exists a TT decomposition [8]. This low-rank
structure further facilitates sampling and optimization for robot
planning and control.

There are several ways to acquire a TT model, including
TT-SVD [9] and TT-Cross [7, 13]. TT-SVD extends the SVD
decomposition from matrix level to a high-dimensional tensor
level. However, it needs to store the full tensor first, which
is impractical to very high-dimensional functions. TT-Cross
solves this issue by selectively evaluating function P on a
subset of elements, avoiding the need to store the entire tensor.

C. Function approximation using Tensor Train
Given the discrete analogue tensor P of a function P ,

we obtain the continuous approximation by spline-based in-
terpolation of the TT cores corresponding to the continuous
variables only. For example, we can use linear interpolation
for the cores (i.e., between the matrix slices of the core) and
define a matrix-valued function corresponding to each core
k ∈ {1, . . . , d},

P k(xk) =
xk − xik

k

xik+1
k − xik

k
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xik+1
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k
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, (2)

where xik
k ≤ xk ≤ xik+1

k and P k : Ik ⊂ R → Rrk−1×rk with
r0 = rd = 1. This induces a continuous approximation of P
given by

P (x1, . . . , xd) ≈ P 1(x1) · · ·P d(xd). (3)

This allows us to selectively do the interpolation only for the
cores corresponding to continuous variables, and hence we can
represent functions in TT format whose variables could be a
mix of continuous and discrete elements.

D. Global Optimization using Tensor Train

An arbitrary function can be transformed into a nonnegative
function in TT format, which can be interpreted as a proba-
bility density function. The efficient sampling techniques for
density functions in TT format allow to pick samples of only
high-density regions which in turn correspond to the optima.
In practice, the chosen number of prioritized samples N ≥ 1
and the sample(s) with the highest density (or least cost) is
used to represent the optima. This leads to the near-global
solutions, which can be further refined using local optimization
techniques such as Newton-type optimization for continuous
variables. Such process is gradient-free, and it can handle a
mix of continuous and discrete variables. For more details,
readers are referred to [14].

III. METHOD

A. Graph of Tensor Networks

We define a Graph of Tensor Networks (GTN) as a directed
graph G = (V, E), where V is the vertex set and E is the edge
set. For each vertex v ∈ V , it is associated with a set Xv and
a point xv is contained in it. The edge length e(u, v) ∈ E
is defined by an edge cost function le(xu,xv). Moreover, the
edges of the graph satisfy the transition constraints (xu,xv) ∈
Xe, which define the vertex switching conditions. Note that in
this formulation, we do not assume the convex structures of the
vertex set, cost functions, and constraints, which are required
in GCS.

Given the initial vertex state x1 and target state xt, the
full logic-geometric path p in the graph G is a sequence of
distinct vertices (v1, · · · , vK) and the continuous states x1:K .
We define the family of all paths that connect x1 and xt as
P and the set of edges traversed by the path p as Ep. In this
work, In this work, we eliminate the need for an explicit target
goal by using an evaluation function lT over the final vertex
state, with explicit target state definition being a special case.
Therefore, the Logic-Geometric Programming problem [16] in
this graph G can be defined as:

minimize
∑

(u,v,t)∈p

le(xu,xv) + lT (xK),

s.t. p ∈ P,

xv ∈ Xv,xu ∈ Xu,xK ∈ XK ,

(xu,xv) ∈ Xe.

(4)

The above problem is typically a Mixed-Integer Program
(MIP), which is NP-hard and difficult to solve. To address this
issue, we introduce more structures to this problem: 1) Edge
constraints are described by first-order logic action operators.
2) The cost functions and path constraints within each vertex
(e.g., dynamics of a specific contact mode) are locally smooth.
These assumptions are commonly used in the Task and Motion
Planning literature [17]. Given that smooth functions can be
well-approximated by a few basis functions, the discretized
tensor can be effectively approximated by a lower-dimensional
subspace, leading to a low-rank structure. Therefore, we



propose employing Tensor Networks to approximate the cost
functions and edge constraints in (4).

B. Approximating Value Functions using Tensor Train

The cost function le(xv,xu) can be easily defined as the
Euclidean distance for kinematic obstacle avoidance tasks
in Cartesian space. However, this metric is ineffective for
manipulation tasks with dynamics constraints. From a con-
trol perspective, the value function is a general metric that
measures the distance between two states, considering either
kinematic or dynamics constraints. However, approximating
such value functions is challenging due to the curse of
dimensionality of the state space. In this work, we propose
to address this issue by using Tensor Train to explore the
low-rank structure. The value function is initialized as zero
and is refined iteratively through value iteration. At iteration
i, the (i+1)-th value function approximation using TT-Cross
is computed as follows:

Ai(x,u) =R(x,u) + γ(V i(f(x,u))− V i(x)),∀x,
π(x) = argmax

u
Ai(x,u),

BπV i(x) =R(x, π(x)) + γV i(f(x, π(x)))

V i+1 =TT-Cross(BπV i, ϵ),

(5)

where Ai(x,u) is the advantage function, f(x,u) is the
dynamics model and R(x,u) is the reward function, ϵ is the
accuracy threshold of TT-cross approximation. To compute
V i+1 in TT format, the function BπV i is queried iteratively
using TT-Cross(BπV i, ϵ), until convergence. This algorithm
is called Tensor Train for Generalized Policy Iteration (TTPI).
The reader is referred to [15] for more details.

C. Logic-Geometric Programming using GTN

We can therefore associate each vertex set in the graph
G with a value function that indicates the distance between
any two states in the vertex set. To solve (4), we propose an
approach that alternates between symbolic vertex search and
value optimization.

1) Level 1: Symbolic Search: We use Planning Domain
Definition Language (PDDL) [1] to describe the edge con-
straints Xe and then utilize Monte Carlo Tree Search (MCTS)
to search for the appropriate vertex sequence v1:K . The
preconditions and effects of each vertex are denoted as sk−1

and sk, respectively, forming a rule-based representation of
symbolic transitions sk = succ(sk−1, vk). In each iteration,
MCTS relies on the Upper Confidence Bound (UCB1) [18] to
balance exploration and exploitation strategies.

2) Level 2: Value Optimization: Conditioning on the vertex
skeleton, we can compute the vertex states x1:K by optimizing
(4). The resulting path should satisfy both the vertex con-
straints and the edge constraints. The edge constraints dictate
that xk must lie within the intersection space of two adjacent
vertex sets, Xk and Xk+1, ensuring configuration consistency.
The vertex constraints are addressed by the local controller,
e,.g., primitive policy, within each vertex set.

Fig. 2: An example of GTN for a planar pushing task. The pusher
and slider are represented in orange and blue colors, respectively.
Each face can be seen as a vertex in the graph.

(a) Reaching (b) W/ add. weight (c) W/ disturbance

Fig. 3: Pusher-slider system where the robot pushes an object by
contact switching.

Since the objective function can be in any form, either
convex or non-convex, depending on the value functions of
selected skills, we employ the Cross-Entropy Method (CEM)
[12, 3] as the optimization technique. The distributions are
iteratively updated towards the fraction of the population with
higher objective scores until converging to the best solution.
For more details, readers are referred to [19].

IV. EXPERIMENTS

We validate the proposed idea on two applications: face-
switching pusher-slider system and long-horizon sequential
manipulation. The accompanying video can be found at:
https://youtu.be/RQ OQUmzSdk.

A. Face-switching pusher-slider system

The pusher-slider system is widely used for testing algo-
rithms in robot planning and control due to the challenges
posed by its under-actuated dynamics and multiple contact
modes. In this study, we introduce a face-switching mechanism
to broaden the feasible target space. However, it further
complicates the problem by introducing additional logic states.

The planar slider geometry is assumed to be a polygon
with NF faces. Each face can be considered as a vertex in
the graph, associated with a value function, as shown in Fig.
2. For each contact face, the slider satisfies the same motion
equations. Therefore, we can treat the discrete vertex selection
together with the continuous variables and solve (4) directly
using dynamic programming, leading to an optimal control
policy with a mix of discrete and continuous outputs. We then
tested the policy on the real robot setup (Fig. 3), using a 7-
axis Franka Emika robot and a RealSense D435 camera. Three

https://youtu.be/RQ_OQUmzSdk


Table I: Comparison of computation time and solution quality for sequential skill planning

Computation Time (s) [w/ sym. goal] Computation Time (s) [w/o sym. goal] Cumulative Reward Sequence Length
GTN STAP GTN STAP GTN STAP

NPM 0.14± 0.23 0.06± 0.03 0.27± 0.15 NA 3.0± 0 2.4± 1.57 3.0± 0
PPM 0.17± 0.1 0.08± 0.02 0.22± 0.13 NA 2.9± 0.7 1.88± 1.01 2.9± 0.7
PM 0.25± 0.15 0.21± 0.02 0.41± 0.02 NA 5.0± 0 3.28± 0.62 5.0± 0

Table II: Performance of real-world experiments for planar pushing

Experiments xerr/cm yerr/cm θerr/rad

Reaching -0.83 1.07 -0.06
Reaching with additional weight 2.89 -1.04 -0.01
Reaching with external disturbance -4.78 -4.10 -0.04

experiments were conducted to assess the robustness of the
obtained policy, as depicted in Fig. 3. The results of these ex-
periments are summarized in Table II. Across all experiments,
the policy successfully reached the final target with precise
positioning and orientation, even amidst significant disruption.
Moreover, Experiment 3 showcased that the policy is able to
dynamically select the contact face based on the current state,
as evidenced by the change in contact face after a 90◦ rotation.
This highlights the ability of our method to handle both logic
and geometric variables in hybrid systems.

B. Long-horizon sequential manipulation

(a) Non-Prehensile
Manipulation

(b) Partly-Prehensile
Manipulation

(c) Prehensile Manipu-
lation

Fig. 4: Three sequential manipulation tasks, including both prehensile
and non-prehensile manipulation primitives. The transparent object
represents the final target configuration in each domain.

We further expand the approximated value function library
by incorporating more primitives, including push, pivot,
pull, pick and place. The approximation accuracy of the
value functions using different approaches is shown in Table
III. The metric is whether the approximated value function
can yield the same result as the cumulative reward given any
two states. The results indicate that value functions obtained
through TTPI offer better accuracy under less computation
time, thanks to the exploration of the low-rank structure.

Three long-horizon manipulation tasks requiring a sequence
of primitives are used to validate the proposed method, as
shown in Fig. 4. Given the same initial state and target config-
uration, GTN actively discovers multiple solutions, including
both the vertex skeleton and the optimal vertex states within
it. The results are shown in the accompanying video.

We then compare our method with another state-of-the-
art sampling-based sequential manipulation planning method

Table III: Comparison of value function accuracy and computation
time (minute).

TTPI SAC PPO
accuracy time accuracy time accuracy time

pushing 0.85 5.6 0.63 36.3 0.61 44.8
pivoting 0.94 0.9 0.51 16.0 0.68 8.7
pulling 0.97 1.1 0.84 16.5 0.72 10.7
pick/place 0.93 1.67 0.64 33.6 0.66 24.6

called STAP [2]. STAP focuses on constraints satisfaction. It
requires an explicit symbolic vertex goal for discrete vertex
planning, followed by feasible solutions sampling. To ensure
a fair comparison, we use MCTS with an explicit symbolic
goal as the task planner in STAP and then employ CEM
for feasibility checking given the vertex skeleton. Table I
illustrates the time required to find one solution and the
solution quality between GTN and STAP. We can observe
that GTN does not require the symbolic vertex goal, whereas
STAP relies on it. STAP can find the solution faster than GTN.
The reason is that STAP focuses only on finding the feasible
solution, while GTN aims to provide (global) optimality over
the full logic-geometric path. This aligns with the comparison
of cumulative rewards. We can observe that the trajectory
found by GTN leads to a higher cumulative reward compared
with STAP, indicating better optimality.

V. CONCLUSION

We propose Graph of Tensor Networks (GTN) to address
the combinatorial complexity and gradient vanishing in logic-
geometric programming. First-order logic is introduced into
the graph to define the edge constraints, while Tensor Train is
utilized to explore the low-rank structure of the value function
associated with each vertex, showcasing better accuracy. We
demonstrate the effectiveness of the proposed idea on a pusher-
slider system and sequential manipulation tasks with contact
uncertainty and external disturbances.

In this work, Tensor Train is employed for value function
approximation, followed by the application of the Cross-
Entropy Method for full optimization. However, we believe
that such low-rank structure expressed by Tensor Train can
also be leveraged for full path optimization. This will be
investigated in the future.

In the sequential manipulation task, value functions for
different manipulation primitives are separately approximated
with distinct scales. Further consideration can be given to use
a common metric for all value functions. This would enable
the use of more efficient graph search techniques, expanding
beyond solely Monte Carlo Tree Search.
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